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The superconductor thermal stability is investigated under the effect of the dual-
phase-lag heat conduction model. Two types of superconductors are considered,
Types I and II. It is found that the dual-phase-lag model predicts a wider stable
region as compared to the predictions of the parabolic and the hyperbolic heat
conduction models. Also, the superconductor thermal stability under the effect
of different design, geometrical and operating conditions is studied.
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1. INTRODUCTION

Thermal stability is one of the major issues in the design of superconduct-
ing devices used in electronic applications and in electric power transmis-
sion cables. These devices must be designed in such a way that they are
stable against thermal disturbances. Thermal stability denotes a situation
where a superconductor can carry the operating current without resistance
at all times even if a localized thermal disturbance has been released.
In the literature, numerous researchers [1–11] have investigated the

superconductor thermal stability using different superconductor types,
geometries, assumptions, applications, operating conditions, and different
models. Most previous work has investigated the superconductor stability



under the effect of the parabolic heat conduction model [1–10], and very
few reports have investigated the stability under the effect of the hyperbolic
heat conduction model. Based on the authors’ knowledge, the supercon-
ductor thermal stability under the effect of the dual-phase-lag heat con-
duction model has not been investigated. This is the objective of the present
work. The investigation considers the stability of Type I and II supercon-
ductors under different operating, design, and geometrical parameters.

2. ANALYSIS

Consider a thin superconductor of infinite length carrying an electric
current as shown schematically in Fig. 1. The superconductor may be of
Type I or II. In Type I the superconductor is a non-composite type while in
Type II the superconductor consists of a metal matrix and superconducting
strands (filaments). The superconductor is cooled using a cooling liquid
having convective heat transfer coefficient h. A conductor section of length
2l is instantly heated from the heat source up to a temperature Ti, exceed-
ing the critical superconductor temperature Tc1 at a given current. The
temperature field in the normal zone and the quenching process are
governed by the energy equation coupled with the dual-phase-lag heat
conduction constitutive law. With the assumption of lumped behavior
in the radial direction and constant thermal properties, the governing
equations are given as

C
“T
“t
=k

“q
“x
−
hP
A
(T−To)+g(t, x) (1)

q(x, t)+yq
“q(x.t)
“t
=−k

“T
“x
−kyT

“
2T
“t “x

(2)

Fig. 1. Schematic diagram for the problem under con-
sideration.
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Eliminating q between Eqs. (1) and (2), yields
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Where j=hP
A (T−To).

In the literature, numerous attention has been paid to the dual-phase-
lag heat conduction model as described by Eqs. (1) to (3) [12–16]. The
dual-phase-lag describes the temperature response with lagging in the
linearized framework while accommodating the first-order effect of yq and yT.
It captures several representative models in heat transfer as special cases. In
the absence of the two phase lags, yq=yT=0, Eq. (3) reduces to the diffu-
sion equation using Fourier’s law. In the absence of phase-lag of the tem-
perature gradient, yT=0, Eq. (3) reduces to the wave model. Thus, the two
popular models used for describing the macroscopic heat conduction are
thus captured in the framework of the dual-phase-lag model under special
cases. Also, Eqs. (1) and (3) assume that the system is lumped in the trans-
verse direction of the superconductor. This implies that the temperature
variation in the transverse direction of the conductor is insignificant. This
condition is valid when the Biot number, defined as hd/k, is much less than 1.
This condition is satisfied under most operating conditions, since super-
conducting materials are of very high thermal conductivity and small
radius, while h is of moderate values. The steady capacity of the ohmic
heat source is given as for Type I superconductor:

g(T)=0 for T [ Tc1

g(T)=fgmax for T \ Tc1
(4)

and for Type II superconductor:

g(T)=0 for T [ Tc1

g(T)=
T−Tc1
Tc−Tc1

for Tc1 < T < Tc1

g(T)=gmax for T \ Tc1

(5)

Due to the symmetry of the normal zone, the analysis is limited to the half
zone, i.e., to the domain that lies within x \ 0. Equation (3) assumes the
following initial and boundary conditions
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T(0, x)=Ti for 0 < x [ l, T(0, x)=To for x > l

“T(0, x)
“t

=0, for 0 [ x [.

“T(0, x)
“t

=0, T(t,.)=To

(6)

It is more convenient to rewrite Eqs. (3) to (6) using the following dimen-
sionless parameters:

t=
x

2`ayq
, b=

t
2yq
, h=

T−To
Tc−To

Q=
4yqg(T)
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2yq

As a result, Eq. (3) is reduced to
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The heating source in its dimensionless form is rewritten as:

for Type I superconductor:

Q=0 for h < hc1
Q=fGmax for h \ hc1

(8)

and for Type II superconductor:

Q=0 for h [ hc1

Q=Gmax
h−hc1
1−hc1

for hc1 < h < 1

Q=Gmax for h \ 1

(9)

and Eq. (6) is reduced to

h(0, t)=B for 0 < t [ l, h(0, t)=0 for t > l

“h(0, t)
“b

=0, for 0 [ t [.

“h(0, t)
“b

=0, h(b,.)=0

(10)
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2.1. Thermal Stability Criterion

The temperature distribution within the superconductor has the
following general form, h=h(b, t, B, R, Q, H, L, f). It is obvious that the
superconductor maximum temperature occurs at t=0. If the temperature
distribution is stable at this location, then it will be stable elsewhere. This
maximum temperature is referred to by h1 where h1=h(b, 0, B, R, Q, H,
L, f). For each combination of B, R, Q, H, L, and f two behaviors can be
featured ; (a) h drops below 1, which means that the normal zone shrinks
to zero and the superconductor is stable and (b) h does not drop below 1,
which indicates that the normal zone grows and the superconductor is
unstable. We are, in particular, interested in the marginal case when the
conditions

h1=1,
“h1

“b
=0 (11)

occur simultaneously. For each combination of B, R, Q, H, L, and f, we
may find the critical value of Q, which is referenced to Qc, where for each
Q [ Qc the two conditions given in Eq. (11) are satisfied. The stability
criterion is then: Q < Qc for collapse (stable) and Q > Qc for growth
(unstable).

2.2. Solution Methodology

The governing equations have been solved numerically by means of
the FlexPDE program [17]. FlexPDE is a software tool for the solution of
a system of partial differential equations. It offers an integrated solution
enviroment, including problem description language, numerical modeling,
and graphical output of the solution. FlexPDE uses the powerful finite
element method to obtain its numerical solution.

3. RESULTS AND DISCUSSION

Figure 2 shows a comparison between the results of the numerical
code used here with that obtained by Bejan and Tien [1] for the super-
conductor stability using the diffusion heat conduction model. The figure
shows the variation of the critical Joule heating source with the disturbance
intensity B. It is clear from this figure that the predictions of both models
are in good agreement.
Figures 3 and 4 show the transient response of the superconductor

maximum temperature h1 for different heating sources Q and for Type I
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Fig. 2. Comparison between the results obtained in this
study and the results reported by Bejan and Tien [1].
(L=1.0, H=0.0, t=0.0, hc1=0.1, and f=0.83).

Fig. 3. Effect of dimensionless Joule heating on Type I-
superconductor thermal stability based on the dual-phase-
lag model. (R=0.0, L=1.0, hc1=0.1, t=0.0, B=2,
H=0.0, and f=0.83).
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Fig. 4. Effect of dimensionless Joule heating on Type II
superconductor based on the dual-phase-lag model.
(L=1.0, R=5, H=0.0, t=0.0, B=2, and hc1 = 0.1).

and II superconductors. It is clear that the stability collapses as the heating
source intensity increases. It is clear that a Type II is more stable than a
Type I superconductor. Type II superconductors may sustain heating
sources up to Q=2 without destroying the superconductor stability, while
Type I is unstable even if the heating source is about 1.5. The reason for
this advantage of Type II superconductors is their ability to redistribute
the excess current to the critical current from the superconductor into the
metal matrix within the normal zone. This, in turn, minimizes the Joule
heating effect through the superconductor.
Figure 5 shows the transient response of the superconductor maximum

temperature h1 at different lateral cooling factors H and for a Type II
superconductor. As predicted, it is clear that the stability collapses as the
cooling factor decreases.
Figure 6 shows the transient response of the superconductor maximum

temperature h1 at different initial disturbance lengths L and for Type I
superconductors. As predicted, the stability collapses as the disturbance
length increases.
Figure 7 shows the transient response of the superconductor maximum

temperature h1 at a different disturbance duration time yi and for Type II
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Fig. 5. Effect of dimensionless lateral cooling on Type II-
superconductor thermal stability based on the dual-phase-
lag model. (Q=3.5, R=5.0, t=0.0, B=2, H=0.0,
L=1.0, and hc1=0.1).

Fig. 6. Effect of dimensionless disturbance length on
Type I-superconductor thermal stability based on dual-
phase-lag model. (Q=2.0, R=5.0, t=0.0, B=2,
f=0.83, and H=0.0).
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Fig. 7. Effect of the dimensionless disturbance duration
time on Type II-superconductor thermal stability based on
the dual-phase-lag model. (L=1.0, Q=0.5, R=5, t=2.0,
B=2, H=0.1, and hc1=0.1).

superconductors. The parameter yi represents the dimensionless distur-
bance duration time which is the time within which a fixed imposed initial
temperature B is maintained within the normal zone. In other words,
yi represents the time within which the initial condition in the normal zone
remains valid. As predicted, the stability collapses as this time increases.
Figures 8 and 9 show a stability map in terms of the critical Joule

heating Qc and the disturbance intensity B for both superconductor types
and using the three heat conduction models. It is clear from this figure that
the dual-phase-lag model predicts the widest stable region as compared to
the predictions of the other two heat conduction models. However, there is
no clear trend for the deviations between the predictions of the wave and
diffusion models. Also, the three models predict a linear relation between
Qc and B. The deviations among the predictions of the three models vanish
as the lateral cooling factor H increases. It is obvious that as B increases,
the conductor ability to sustain Qc while remaining stable, decreases. Also,
it is clear from these two figures that the stability region for Type II super-
conductors is wider than that of Type 1. The deviations among the three
models vanish as B increases. The effect of the lateral cooling factor H is
insignificant at small values of B.
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Fig. 8. Stability criterion for Type I superconductor
subjected to stepwise type disturbance, based on the three
different heat conduction models. (L=1.0, R=5, t=0.0,
hc1=0.1, and f=0.83).

Fig. 9. Stability criterion for Type II superconductor
subjected to stepwise type disturbance, based on the three
different heat conduction models. (L=1.0, R=5, t=0.0,
and hc1=0.1).
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Fig. 10. Comparison between dimensionless maximum
temperature-time history of Type I superconductor based
on the three macroscopic heat conduction models. (Q=1,
L=1.0, t=1.0, B=2, H=0.10, and f=0.83).

Fig. 11. Effect of dimensionless current sharing temper-
ature on Type II-superconductor thermal stability based
on the dual-phase-lag model. (L=1.0, Q=1, R=5.0,
t=0.0, B=2, and H=0.0).
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Figure 10 shows the transient response of the superconductor maxi-
mum temperature h1 at different relaxation time ratios R and for Type I
superconductors. It is clear that the stability collapses as R decreases. As R
decreases, the predictions of the dual-phase-lag model approach that of
the diffusion model. As mentioned previously, the dual-phase-lag model
predicts a wider stability region than the diffusion model.
Figure 11 shows the transient response of the superconductor maxi-

mum temperature h1 at different current sharing temperatures hc1 and for
Type II superconductors. It is clear that as the current sharing temperature
decreases, the stability collapses. However, this effect is insignificant. This
is obvious since as hc1 increases, the superconductor can sustain a localized
thermal disturbance having a higher temperature before entering the normal
zone.

4. CONCLUDING REMARKS

The superconductor thermal stability is investigated under the effect of
the dual-phase-lag heat conduction model. The parameters which are found
to affect the superconductor thermal stability are the disturbance intensity B,
volume fraction of the stabilizer f, initial disturbance length L, lateral
cooling factor H, Joule heating source Q, relaxation time ratio R, current
sharing temperature hc1 and the disturbance duration time yi. It is found
that the dual-phase-lag model predicts a wider stable region as compared
to the predictions of the parabolic and hyperbolic heat conduction models.
As predicted, the study shows that a Type II superconductor is more stable
than for Type I. The superconductor stability improves as L, B, yi, and Q
decrease and as H, R, and hc1 increase. However, the effect of the current
sharing on the superconductor stability is insignificant.

NOMENCLATURE

A Conductor cross sectional area, m2

Am Matrix cross sectional area, m2

B Dimensionless disturbance intensity,
Ti−To
Tc−To

C Heat capacity, J ·m−3 ·K−1

d Conductor diameter, m
f Volume fraction of the stabilizer in conductor
g Joule heating, W·m−3
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gmax maximum Joule heating with the whole current in the stabilizer,
rJ2

p
, W·m−3

Gmax Dimensionless maximum Joule heating,
4yqgmax
C(Tc−To)

h Convective heat transfer coefficient, W·m−2 ·K−1

H Lateral cooling factor,
4yqhP
CA

J Current density, A ·m−2

k Thermal conductivity of conductor, W·m−1 ·K−1

2l Length of conductor subjected to heat disturbances, m
P Conductor perimeter, m
q Conduction heat flux, W·m−2

Q Dimensionless Joule heating source,
4yqg(T)
C(Tc−To)

R Relaxation time ratio yT/(2yq)
t Time, s
T Temperature, K
Tc Critical temperature, K
Tc1 Current sharing temperature, K
Ti Initial temperature, K
To Ambient temperature, K
x Spatial coordinate, m

Greek Symbols

a Thermal diffusivity,

b Dimensionless time,
t
2yq

h Dimensionless temperature,
T−To
Tc−To

hc1 Dimensionless current sharing temperature,
T−To
Tc−To

h1 Dimensionless maximum temperature,
T(t, 0)−To
Tc−To

t Dimensionless axial location,
x

2`ayq
ro Stabilizer electrical resistivity, W
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yi Dimensionless duration time ,
ti
2yq

yq Relaxation time of heat flux, s
yT relaxation time of temperature gradient, s

Subscripts

i Initial
sc Sharing current
max Maximum
o Ambient
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